Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
2.
Eur Radiol ; 33(3): 1612-1619, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36205768

ABSTRACT

OBJECTIVES: This study aimed to demonstrate the effectiveness of spectral photon-counting CT (SPCCT) in quantifying fibrous cap (FC) thickness, FC area, and lipid-rich necrotic core (LRNC) area, in excised carotid atherosclerotic plaques by comparing it with histopathological measurements. METHODS: This is a single-center ex vivo cross-sectional observational study. Excised plaques of 20 patients (71 +/- 6 years; 13 men), obtained from carotid endarterectomy were scanned with SPCCT using standardized acquisition settings (120k Vp/19 µA; 7-18 keV, 18-30 keV, 30-45 keV, 45-75 keV, and 75-118 keV). FC thickness, FC area, and LRNC area were quantified and compared between high-resolution 3D multi-energy CT images and histopathology using the Wilcoxon signed-ranks test and Bland-Altman analysis. Images were interpreted twice by two radiologists separately, blinded to the histopathology; inter- and intra-rater reliability were assessed with the intra-class correlation coefficients (ICC). RESULTS: FC thickness and FC area did not show significant differences between the SPCCT-derived radiological measurements versus the histopathological measurements (p value range 0.15-0.51 for FC thickness and 0.053-0.30 for FC area). For the LRNC area, the p value was statistically non-significant for reader 1 (range 0.36-0.81). The Bland-Altman analysis showed mean difference and 95% confidence interval for FC thickness, FC area, and LRNC area, 0.04 (-0.36 to 0.12) square root mm, -0.18 (-0.34 to -0.02) log10 mm2 and 0.10 (-0.088. to 0.009) log10 mm2 respectively. CONCLUSION: The result demonstrated a viable technique for quantifying FC thickness, FC area, and LRNC area due to the combined effect of high spatial and energy resolution of SPCCT. KEY POINTS: • SPCCT can identify and quantify different components of carotid atherosclerotic plaque in ex vivo study. • Components of atherosclerotic plaque did not show significant differences between the SPCCT-derived radiological measurements versus the histopathological measurements.


Subject(s)
Plaque, Atherosclerotic , Male , Humans , Plaque, Atherosclerotic/diagnostic imaging , Plaque, Atherosclerotic/pathology , Reproducibility of Results , Cross-Sectional Studies , Carotid Arteries/diagnostic imaging , Carotid Arteries/pathology , Tomography, X-Ray Computed , Fibrosis
4.
Arthritis Rheumatol ; 71(7): 1158-1162, 2019 07.
Article in English | MEDLINE | ID: mdl-30714678

ABSTRACT

OBJECTIVE: To determine whether novel multi-energy spectral photon-counting computed tomography (SPCCT) imaging can detect and differentiate between monosodium urate (MSU), calcium pyrophosphate (CPP), and hydroxyapatite (HA) crystal deposits ex vivo. METHODS: A finger with a subcutaneous gouty tophus and a calcified knee meniscus excised at the time of surgery were obtained. The finger was imaged using plain x-ray, dual-energy CT (DECT), and multi-energy SPCCT. Plain x-ray and multi-energy SPCCT images of the meniscus were acquired. For validation purposes, samples of the crystals were obtained from the tophus and meniscus, and examined by polarized light microscopy and/or x-ray diffraction. As further validation, synthetic crystal suspensions of MSU, CPP, and HA were scanned using multi-energy SPCCT. RESULTS: Plain x-ray of the gouty finger revealed bone erosions with overhanging edges. DECT and multi-energy SPCCT both showed MSU crystal deposits; SPCCT was able to show finer detail. Plain x-ray of the calcified meniscus showed chondrocalcinosis consistent with CPP, while SPCCT showed and differentiated CPP and HA. CONCLUSION: Multi-energy SPCCT can not only detect, differentiate, and quantify MSU crystal deposits in a gouty finger ex vivo, but also specifically detect, identify, and quantify CPP within an osteoarthritic meniscus, and distinguish them from HA crystal deposits. There is potential for multi-energy SPCCT to become useful in the diagnosis of crystal arthropathies.


Subject(s)
Chondrocalcinosis/diagnostic imaging , Fingers/diagnostic imaging , Gout/diagnostic imaging , Menisci, Tibial/diagnostic imaging , Tomography, X-Ray Computed/methods , Calcium Pyrophosphate , Crystal Arthropathies/diagnostic imaging , Diagnosis, Differential , Durapatite , Fingers/pathology , Humans , Menisci, Tibial/pathology , Radiography , Uric Acid
5.
AJR Am J Roentgenol ; 209(5): 1088-1092, 2017 Nov.
Article in English | MEDLINE | ID: mdl-28834448

ABSTRACT

OBJECTIVE: We aimed to determine whether multienergy spectral photon-counting CT could distinguish between clinically relevant calcium crystals at clinical x-ray energy ranges. Energy thresholds of 15, 22, 29, and 36 keV and tube voltages of 50, 80, and 110 kVp were selected. Images were analyzed to assess differences in linear attenuation coefficients between various concentrations of calcium hydroxyapatite (54.3, 211.7, 808.5, and 1169.3 mg/cm3) and calcium oxalate (2000 mg/cm3). CONCLUSION: The two lower concentrations of hydroxyapatite were distinguishable from oxalate at all energy thresholds and tube voltages, whereas discrimination at higher concentrations depended primarily on the energy thresholds used. Multienergy spectral photon-counting CT shows promise for distinguishing these calcium crystals.


Subject(s)
Calcium Oxalate , Durapatite , Tomography, X-Ray Computed , Phantoms, Imaging , Photons
SELECTION OF CITATIONS
SEARCH DETAIL
...